Learning Center Schoolcraft College

Jump Start Session 3

The Beginning: Vocabulary

• A denotes a _____ which occupies space but has no dimension.

AB denotes a ______ which extends infinitely in both directions.

AB denotes a ______ which extends infinitely in one direction.

AB denotes a ______ which has a fixed length.

If you have more than one line, ray, or line segment, two things can happen:

The lines are _____ meaning, they *never* meet/intersect.

The lines are ______ meaning they do meet/intersect.

<u>Angles</u>

When two lines or rays intersect, they form angles that can be named and classified. Naming Angles:

Draw angle EFG:

Naming Angles cont.

When two lines meet and form a 90° angle, the lines are _____

and form a ______

When an angle's measure is greater than 0° but less than 90° the angle is called an

When an angle's measure is greater than 90° but less than 180° the angle is called

an ______

Two angles, whose sum is 180°, are called:

Two angles, whose sum is 90°, are called:______

Classifying Angles

Angles located next to each other and sharing a common side are called ______

Angles located directly across from each other are called_____

Vertical angles are ______, meaning _____

More Special Angles

A line that intersects two parallel lines is called a _____

These lines form special angle relationships.

PQ is parallel to RS

Corresponding angles are located in the same position compared to the transversal.					
Corresponding angles:					
Opposite exterior angles are located outside the parallel lines on opposite	sides of the transversal.				
Opposite exterior angles:	and are				
Opposite interior angles are located inside the parallel lines on opposite side	des of the transversal.				
Opposite interior angles:	and are				
Name 2 pairs of vertical angles:					
Name 2 pairs of adjacent angles:					
Name two pairs of supplementary angles:					

Polygons - Classifying Triangles

By Angle Measure

Right Triangle_____

Acute Triangle_____

Obtuse Triangle_____

By Side Measure

Isosceles Triangle_____

Equilateral Triangle_____

Scalene Triangle_____

Properties of Triangles

A triangle has ____sides, which form ____

The sum of these angles must always add up to _____

The Pythagorean Theorem $a^2 + b^2 = c^2$

The Pythagorean Theorem is used to find the length of a side of ______ Warning: This can only be used with right triangles.

Parts of a right triangle:

Find the length of the hypotenuse

Find the height of the triangle

_								
Р	0	r	m		-	7		۲
	c		ш	ш	-	u	-	ı

Perimeter refers to the _____

Think: Perimeter of a polygon=

3¾ in

AREA

Area measures the ______of a geometric figure. Think:_____

Area is ALWAYS expressed in _____

Area of a square or rectangle =

10yd		
	12yd	

Area of a triangle=

Circumference, Area, Circles & that thing they call pi

 π is the ratio of a circle's ———— $\pi \approx$

Circumference (perimeter) of a circle=

Find the circumference of a circle with diameter $\frac{1}{4}$ mm.

Area of a circle=

Converting Units (Dimensional Analysis)

